Glassiness, Rigidity and Jamming of Frictionless Soft Core Disks

STEPHEN TEITEL, University of Rochester, DANIEL VÅGBERG, PETER OLS-SON, Umeå University — The jamming of frictionless bi-disperse soft core disks is considered, using a variety of different protocols to produce the jammed state. We find, consistent with earlier works, that cooling and compression can lead to a broad range of jamming packing fractions ϕ_J, depending on cooling or compression rate and on initial configuration. Such ϕ_J show no clear upper bound as the cooling or compression rate decreases. In contrast, we show that shearing leads to a jamming transition to a disordered solid, with a well-defined, non-trivial, value of ϕ_J as the shearing rate vanishes. We show that shearing breaks up the particle clustering (the precursor to phase separation) that can lead to increasing values of ϕ_J under slow cooling or compression, and argue that the process of shearing creates a well-defined ensemble that is independent of the starting configuration.

1Supported by DOE Grant No. DE-FG02-06ER46298, Swedish Research Council Grant No. 2007-5234, a grant from the Swedish National Infrastructure for Computing (SNIC) for computations at HPC2N and the Univer. of Rochester Center for Research.