A High Energy X-Ray Diffraction Study of the Atomic-Scale Structure of Novel Vitreous Rare Earth Phosphates1 ERANDI S. GUNAPALA, G.K. MARASINGHE, Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202, CHRIS J. BENMORE, Advance Photon Source, Argonne National Laboratory, Argonne, IL 60439 — The magneto-optical properties of rare earth phosphate glasses make them good candidates for numerous potential applications including high-energy/high power (~10^{15} watt) lasers. Because, properties of these materials depend heavily on their atomic structure, a detailed study can facilitate development of additional applications. A series of (Pr$_2$O$_3$)$_x$(P$_2$O$_5$)$_{1-x}$ glasses where $0.05 \leq x \leq 0.25$ had been characterized by high energy X-ray diffraction. Coordination parameters for nearest coordination neighbors were obtained by Gaussian fitting. The P-O coordination number, N_{PO}, and the P-O, O-O, P-P distances were found to be insensitive to the Pr$_2$O$_3$ content. Coordination numbers N_{PrO} decreased from ~ 8.0 to ~ 7.5 with increasing Pr$_2$O$_3$ content from 0.12 to 0.23. Pr-O distance did not seem to vary with Pr$_2$O$_3$ content in the x range that we studied.

1This research is funded by ND EPSCoR Infrastructure Improvement Program-Doctoral Dissertation Assistantship.

Erandi S. Gunapala
Department of Physics and Astrophysics,
University of North Dakota, Grand Forks, ND 58202

Date submitted: 18 Nov 2010

Electronic form version 1.4