Effect of doping Ag\textsubscript{y}Sb\textsubscript{y}Ge\textsubscript{50−2y}Te\textsubscript{50} thermoelectric materials with rare earths

E.M. LEVIN, S.L. BUD’KO, K. SCHMIDT-ROHR, Iowa State University and Ames Laboratory US DOE — The Ag\textsubscript{y}Sb\textsubscript{y}Ge\textsubscript{50−2y}Te\textsubscript{50} system represents some of the most efficient thermoelectrics, the so-called TAGS materials. In order to understand the effect of doping of Ag\textsubscript{6.52}Sb\textsubscript{6.52}Ge\textsubscript{36.96}Te\textsubscript{50} ("TAGS-85") with rare earth atoms on the Ge and Te sites, Ag\textsubscript{6.52}Sb\textsubscript{6.52}Ge\textsubscript{36.96−x}R\textsubscript{x}Te\textsubscript{50} and Ag\textsubscript{6.52}Sb\textsubscript{6.52}Ge\textsubscript{36.96}R\textsubscript{x}Te\textsubscript{50−x} materials with R = Gd and Dy (rare earth atoms with large magnetic moments) have been studied by measuring X-ray diffraction (XRD) and 125Te nuclear magnetic resonance (NMR) at 300 K, thermopower and resistivity at 300-760 K, and the magnetization at 1.8-350 K and in magnetic field 0-55 kOe. XRD and 125Te NMR show that some rare earth atoms are incorporated into the lattice and enhance the thermopower by \sim10\%. At 700 K, this yields a power factor of up to 36 \mu W·cm−1·K−2, which is \sim20\% higher than in TAGS-85. All materials studied can be considered as degenerate magnetic semiconductors with non-interacting localized magnetic moments formed by rare earth atoms, with a different effect of rare earths on the Ge and Te sites. Reasons for the thermopower enhancement due to doping with rare earths including magnetic and non-magnetic phenomena are discussed.

E. M. Levin
Iowa State University and Ames Laboratory US DOE

Date submitted: 18 Nov 2010