Plasma Excitations of Dressed Dirac Electrons in Graphene1

OLEKSIY ROSLYAK, Hunter College, CUNY, DANHONG HUANG, AFRL, Kirkland Airforce Base, ANDRII IUROV, GODFREY GUMBS, Hunter College, CUNY — The dispersion relation for the collective plasma excitations of optically dressed Dirac electrons in single and double graphene layers is calculated in the random-phase approximation. The presence of circularly polarized light gives rise to an energy gap ϵ_g between the conductance and valence bands. The value of ϵ_g may be adjusted by varying the frequency and intensity of the light which could be sizable compared to that which is generated by spin-orbit coupling or sub-lattice symmetry breaking. We present numerical results for the dispersion relation for plasma excitations for various energy gaps and separation between graphene layers. The induced ϵ_g opens up a gap in the particle-hole continuum thus allowing plasmon excitations of short wave-length. An optical and acoustic phonon-like modes are obtained in the double layer configuration. Those are very sensitive to the induced energy gap and symmetry breaking between the layers.

1This work was supported by contract # FA 9453-07-C-0207 of AFRL and the Air Force Office of Scientific Research (AFOSR).

Godfrey Gumbs
Hunter College, CUNY