Rare earth substitution in AFe2As2 single crystals1 SHANTA SAHA, NICHOLAS BUTCH, TYLER DRYE, JEFF MCGILL, JOHNPIERRE PAGLIONE, Center for Nano Physics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD, PETER ZAVALIJ, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, JEFFREY LYNN, NIST Center for Neutron Research, Gaithersburg, MD — Synthesis and characterization of aliovalent light rare earth substitutions for alkaline earth atoms are studied in single crystals of FeAs-based compounds with the ThCr2Si2 structure. Electrical resistivity, magnetic susceptibility and structural parameters determined via x-ray and neutron scattering techniques are investigated as a function of chemical pressure and charge doping induced by substitution. Measured physical properties are compared to the effects of external applied pressure on CaFe2As2, known to induce a collapse of the tetragonal unit cell.

1This work was supported by AFOSR MURI Grant FA9550-09-1-0603.

Shanta Saha
Center for Nano Physics and Advanced Materials, Dept of Physics,
University of Maryland, College Park, MD 20742