Temperature influence on a molecular switching under electric field: quantum transport ab initio calculation

MAIA VERGNIORY, Donostia International Physics Center, JOSE GRANDINO-ROLDAN, University of Jaen, ARAN GARCÍA-LEKUE, Donostia International Physics Center, LIN-WANG WANG, Lawrence Berkeley National Labortaory, QUANTUM TRANS- PORT TEAM — A molecular transistor based on torsion-angle conformation change driven by gate electric field is designed and studied using ab initio calculations. This transistor consists of a \(\text{SH} - \text{C}_6\text{H}_2\text{F(CH}_3)_2\text{C}_6\text{H}_2(\text{CH}_3)\text{F} - \text{SH} \) molecule sandwiched between two Au(111) electrodes, where the interaction between the molecular dipole and a gate voltage induced electric field will cause the molecule to twist along its c-axis. This twist changes the quantum conductivity of the molecule. The effect of thermal fluctuation on the molecular conformation is studied, so is the ability of the transistor to shut off its current. The advantages and challenges of using such molecular conformation change as a mechanism for transistor gating are discussed

\(^1\)This work has been supported partially by the U.S. Department Of Energy BES/SC under contract No. DE-AC02-05CH11231 and and the Spanish MICINN (Grant No. FIS2010-19609-C02-02).

Maia Vergniory
Donostia International Physics Center

Date submitted: 30 Nov 2010