Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Synchrotron x-ray single-crystal structure analysis of a spinel oxide FeV$_2$O$_4$ with spin and orbital degrees of freedom YOICHI NII, HAJIME SAGAYAMA, TAKA-HISA ARIMA, IMRAM, Tohoku University, RIU SAKAI, SHINOBU AYOAGI, EIJI NISHIBORI, HIROSHI SAWA, Department of Applied Physics, Nagoya University, KUNIHISA SUGIMOTO, SPring-8/JASRI, HIROYUKI OHSUMI, MASAKI TAKATA, RIKEN SPring-8 Center — It has been reported that FeV$_2$O$_4$, which has orbital and spin degrees of freedom both in tetrahedral Fe$^{2+}$(d^6) sites and octahedral V$^{3+}$(d^2) sites, exhibits successive structural phase transitions, accompanying a ferrimagnetic transition. The origin of the phase transitions is supposed to be a cooperation and/or competition between the orbital and spin degrees of freedom both in Fe$^{2+}$ and V$^{3+}$. By a synchrotron x-ray single-crystal structure analysis, we determined the space group and atomic coordinate of each phase (cubic- HT-tetra.- HT-ortho.- LT-tetra.). The results suggest that the HT-tetra. (a>c) and HT-ortho. phases should be ascribed to the FeO$_4$ local compression, whereas VO$_6$ elongation should be responsible for the LT-tetra. (c>a) phase. We also discuss the orbital ordering (OO) pattern assuming strong electron-lattice coupling. A conceivable OO pattern of V$^{3+}$ at the LT-tetra. (c>a) is ferroic one with yz and zx orbitals occupied, which is unique among spinel-type vanadates.

Yoichi Nii
IMRAM, Tohoku University

Date submitted: 14 Dec 2010

Electronic form version 1.4