Collective Phase Mode and the Role of lattice distortions at $T_N \sim T_C$ in XMn_2O_5 ($X=\text{Bi, Pr, Sm, Gd, Tb}$) N.E. MASSA, LANAIS EFO-CEQUINOR, UNLP, La Plata, Argentina, A.F. GARCÍA FLORES, E. GRANADO, IFGW, UNICAMP, Campinas, Brazil, G.F.L. FABBbris, G. DE M. AZEVEDO, LNLS, Campinas, Brazil, L. DEL CAMPO, D. DE SOUSA MENES-SES, P. ECHEGUT, CNRS-CERMHTI, Orleans, France, M.J. MARTÍNEZ-LOPE, J.A. ALONSO, ICMM-CSIC, Madrid, Spain — We report on detailed temperature dependent infrared reflectivity, Raman, local structure, and X-ray diffraction measurements of multiferroic XMn_2O_5 ($X=\text{Bi, Pr, Sm, Gd, Tb}$). While for BiMn_2O_5 there are weak but distinct spectroscopic changes that together with high resolution diffraction patterns suggest a lattice role at $T_N \sim T_C$, for the rare earth (R) replaced infrared spectra have as a main feature a broad band at meV energies in addition to progressive rotation of Mn-O polyhedra. That band, independent of the R^{3+} ion size and common to all, suggests hopping of carriers through fluctuations at a local scale. It partially condenses below 40 K, i.e., the collective electronic behavior changes from delocalized to one partially localized. We assimilate that condensate to a CDW-like phase mode. It might indicate induced orbital correlation of charge transfers between Mn sites. Frequency Raman phonon shifts are observed at $T \sim 60$ K, due to spin-phonon coupling, and at $T_N \sim T_C$. Below $T_N \sim T_C$ there is no a Raman soft mode that might be associated to a CDW amplitude mode.