Canted-spin-caused electric dipoles: a local symmetry theory

THOMAS A. KAPLAN, SUBHENDRA D. MAHANTI, Michigan State University

— A pair of magnetic atoms with canted spins S_a and S_b can give rise to an electric dipole moment \mathbf{P}. Several forms for the dependence of \mathbf{P} on the spins have been derived from various microscopic models, some of which have been invoked to explain experimental results found in some multiferroic materials. The forms are $P_1 \propto R \times (S_a \times S_b)$, $P_2 \propto S_a \times S_b$, $P_3 \propto S_a(S_a \cdot R) - S_b(S_b \cdot R)$, where R is the relative position of the atoms. To unify and generalize these various forms we consider \mathbf{P} as the most general quadratic function of the spin components that vanishes whenever S_a and S_b are collinear. The study reveals new forms. We generalize to the vector \mathbf{P}, Moriya’s symmetry considerations on the (scalar) DM energy $D \propto S_a \times S_b \times S_b$ (which led to restrictions on D). This provides a rigorous proof that P_1 is allowed no matter how high the symmetry of the atoms plus environment, and gives restrictions for all other contributions. The analysis leads to the suggestion of new terms omitted in the existing microscopic models, and predicts an unusual antiferroelectric ordering in the antiferromagnetically and ferroelectrically ordered phase of RbFe(MoO$_4$)$_2$.

Thomas A. Kaplan
Michigan State University

Date submitted: 17 Nov 2010