Laser Scanning Microscopy of Few-Layer Graphene: Optical Reflectivity Contrast

BEHNOOD GHAMSARI, Center for Nanophysics and Advanced Materials, University of Maryland, College Park, ALEXANDER ZHU-RAVEL, B. Verkin Institute for Low Temperature Physics & Engineering, NAS of Ukraine, DANIEL LENSKI, Intel Corporation, 5200 NE Elam Young Parkway, Hillsboro, OR 97124, MICHAEL FUHRER, STEVEN ANLAGE, Center for Nanophysics and Advanced Materials, University of Maryland, College Park — We report laser scanning microscopy (LSM) of few-layer graphene, where a laser beam is raster scanned over the samples and the local reflectivity of the structure is directly measured through a silicon photodiode. The samples are grown by ambient-pressure chemical vapor deposition on copper foils, and transferred to SiO2/Si substrates, and consist of regions of single- and multi-layer graphene (D. R. Lenski, and M. S. Fuhrer, e-print arXiv: 1011.1683). While the local reflectivity of the structure depends on the thickness of the graphene layer, the LSM data is used to construct a two-dimensional reflectivity image of the sample which, in turn, enables identifying the local distribution of different graphene multilayers and local microscopic properties of the graphene sample.

This work is supported by Department of Energy/High Energy Physics through grant number DESC0004950 and ONR through the Maryland AppEl, Task D10, through grant number N000140911190.