Quantum gates for the singlet-triplet $T_+\ qubit$

HUGO RIBEIRO, University of Konstanz, J.R. PETTA, Princeton University, GUIDO BURKARD, University of Konstanz; — We theoretically show that hyperfine interactions can be harnessed for quantum gate operations in GaAs semiconductor quantum dots [1]. In the presence of an external magnetic field B, which splits the triplet states, the hyperfine interaction results in an avoided crossing between the spin singlet S and spin triplet T_+, which form the basis of a new type of spin qubit. Coherent quantum control for this qubit is achieved through Landau-Zener-Stückelberg transitions at the S-T_+ avoided crossing [2]. A set of suitable transitions allows to build any single qubit gates on timescales shorter than the decoherence time $T_2^* \sim 16\text{ns}$ [1]. We also show how to build a conditional two-qubit gate by capacitively coupling two S-T_+ qubits.