Evolution of odd-denominator fractional quantum Hall states in a two-subband system1 MANSOUR SHAYEGAN, JAVAD SHABANI, YANG LIU, Princeton University — Our magneto-transport measurements reveal that the sequence of fractional quantum Hall (FQH) states observed in two-subband, wide GaAs quantum wells at high fillings ($\nu > 2$) are very different from those of a single-subband system. When the Fermi level lies in the lowest Landau level of either of the two subbands the odd-denominator FQH states following the usual, composite fermion filling sequences are observed. These include states at $\nu = 7/3$, $8/3$, $12/5$, $13/5$, $10/3$, $11/3$, $17/5$, $18/5$, and $25/7$. The evolution of these states with changing the Zeeman and subband energies is consistent with coincidences of composite fermion Landau levels.

1We acknowledge support through the NSF (DMR-0904117 and MRSEC DMR-0819860) for sample fabrication and characterization, and the DOE BES (DE-FG02-00-ER45841) for measurements.