Linewidth Narrowing for 31Phosphorus MRI of Bones

MERIDETH FREY, SEAN BARRETT, Yale University Physics Dept. — Bone is a particularly challenging tissue to study with conventional MRI given the relatively low water density and wider linewidths of its solid components.\(^1\) Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence that can be used to narrow the broad NMR spectrum of solids.\(^2\) Here we narrow the spectrum of the 31P in natural bone mineral (by a factor of up to 1600x). This technique offers a new route to do high spatial resolution, 3D 31P MRI of bone which complements conventional MRI and x-ray based techniques to study bone physiology and structure. Thus far we have used our pulse sequence to do high spatial resolution (sub-250 µm)3 3D 31P MRI of *ex vivo* dry bovine cortical bones, wet procine rib bones, and wet rabbit femoral bones at 4T. We have also explored the use of compressive sampling3 to push imaging time down to less than two hours without distracting artifacts.

\(^3\)M. Lustig et al., Mag Res Med 58, 1182 (2007)