Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids: applications to Alq$_3$ and CuPc

ZHI-GANG YU, SRI International — We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up- and down-spin in the polaron states and can be characterized by an admixture parameter γ^2. The spin mixing effects spin flips as polaron hops from one molecule to another even through the interaction that facilitate hopping is spin-independent. The spin relaxation time is $\tau_{sf} = \bar{R}^2/(16\gamma^2 D)$ and the spin diffusion length is $L_s = \bar{R}/4|\gamma|$, where \bar{R} is the mean polaron hopping distance and D the carrier diffusion constant. We show that the SOCs in tris-(8-hydroxyquinoline) aluminum (Alq$_3$) and in copper phthalocyanine (CuPc) are particularly strong, due to the orthogonal arrangement of the three ligands in the former and Cu 3d orbitals in the latter. The theory quantitatively explains the recent observed spin diffusion lengths in Alq$_3$ from muon measurements and in CuPc from two-photon photoemission.

1This work was partly supported by the Office of Basic Energy Sciences, US Department of Energy.

Zhi-Gang Yu
SRI International

Date submitted: 14 Dec 2010 Electronic form version 1.4