Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Magnetic Carbon Nanotubes
Tethered with Maghemite Nanoparticles

IL TAE KIM, GRADY NUNNERY, KARL JACOB, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, JUSTIN SCHWARTZ, XIAOTAO LIU, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, RINA TANNENBAUM, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 — We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse γ-Fe₂O₃ magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the γ-Fe₂O₃ nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

Il Tae Kim
School of Materials Science and Engineering,
Georgia Institute of Technology, Atlanta, GA, 30332

Date submitted: 22 Nov 2010
Electronic form version 1.4