Real Space Green’s Function Calculations of RIXS1 J.J. KAS, J.J. REHR, U. Washington, J.A. SOININEN, U. Helsinki – We present an \textit{ab initio} theory of resonant inelastic x-ray scattering (RIXS) based on the real-space multiple scattering Green’s function (RSGF) formalism and a quasi-boson model Hamiltonian. It is shown that the RIXS spectrum is quasi-local in nature, depending primarily on the Green’s function close to the absorbing site. Based on several assumptions, we derive an approximation to the RIXS spectrum in terms of a convolution of the x-ray absorption and x-ray emission spectra. In addition, quasi-particle self-energy and other many-body effects are calculated using a many-pole model dielectric function, and included via a convolution of the RIXS spectrum with an energy dependent spectral function. Core hole effects are also investigated. The method is implemented in an extension of the RSMS code FEFF902 and illustrated with several examples. Results are found to be in qualitative agreement with experiment.

1Supported by DOE BES Grant DE-FG03-97ER45623 and DOE CMCSN.

2J.J. Rehr et al., Comptes Rendus Phys. \textbf{10}, 548 (2009)

J. J. Kas
University of Washington

Date submitted: 14 Dec 2010

Electronic form version 1.4