Raman scattering studies of the pressure- and temperature-dependent phases of the orbital ordering material KCuF$_3$1 SHI YUAN, S. LANCE COOPER, Department of Physics and Frederick Seitz Materials research laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 — We present a study of the temperature- and pressure-dependence of the prototypical orbital ordering system KCuF$_3$ using Raman scattering. Temperature-dependent measurements offer evidence for structural instabilities in KCuF$_3$ at temperatures well below the putative 800K orbital ordering temperature; this evidence includes the observation of anomalous softening of several phonon modes between 50K and 300K and an E_g phonon mode splitting below 50K. The latter indicates a tetragonal-to-orthorhombic structural transition near 50K just preceding the 3D magnetic ordering temperature at $T_N \approx 40K$. Low-temperature, pressure-dependent Raman studies of KCuF$_3$ are also reported to clarify the pressure dependence of the low temperature structural phases in this material.

1Work supported by the U.S. Department of Energy under Award No. DE-FG02-07ER46453.