Architectural Effects in Thin Films of Poly(styrene-b-methyl methacrylate) Copolymers

NIKHILA MAHADEVAPURAM, THAI VU, GILA STEIN, Univ. of Houston — Block copolymer self-assembly offers a simple route to generate nanostructures over large areas. Control over domain orientation is critical for nanopatterning; typically, the lower-surface energy constituent will segregate at the air interface and drive a parallel orientation of cylindrical or lamellar domains. Recent works by Khanna et al.2 and Matsen3 suggest that molecular architecture can affect surface energetics and domain orientations. We compared the thin film ordering of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) diblock copolymers with PMMA-PS-PMMA triblock copolymers. Films that ranged in thickness from $t = L_0 - 5L_0$ were cast on neutral substrates, annealed under vacuum at 220$^\circ$C for 2 days, and then measured with grazing-incidence small-angle X-ray scattering. The triblock copolymers adopt a perpendicular domain orientation near the film surface for all thicknesses considered, while the perpendicular domain orientation was only stable for diblock copolymers when $t \leq L_0$. However, triblock thin films contain defects in the film interior that limit their utility.

1Funded by NSF ECCS 0927147
2Khanna et al., Macromolecules, 39, 9346-9356, 2006
3Matsen, Macromolecules, 43, 1671-1674, 2010