Dissipation of compound torsional oscillator loaded with solid 4He containing 3He impurity level from 0.3 to 25 ppm1 PATRYK GUMANN2, MICHAEL KEIDERLING, DAVID RUFFNER, Rutgers University, HARRY KOJIMA — High sensitivity of supersolid phenomenon in solid 4He to low levels of 3He impurity(x_3) is a puzzle not yet understood. We have analyzed the data taken using our compound torsional oscillator on the variation of dissipation as x_3 was varied between 0.3 and 25 ppm. The compound oscillator allows studies of the dissipation at two oscillator mode frequencies(0.5 and 1.2 kHz). Arrhenius plots of temperatures, where peaks in dissipation occur, vs. frequency allow extracting the activation energy and the characteristic time. The data are consistent with distributions of activation energy whose widths increase with x_3 but the mean value of \sim 430 mK independent of x_3. The characteristic time varies approximately as $\propto x_3^{2/3}$. Temperature dependence of the dissipation is consistent with Debye model but frequency dependence is not. We give an interpretation of the characteristic time in terms of diffusion of 3He along dislocation lines.

1Research supported in part by NSF.
2Present address: Institute for Quantum Computing, University of Waterloo, Waterloo, Canada

Haruo Kojima
Rutgers University

Date submitted: 17 Nov 2010