Exploration of the pressure-induced superconducting phase in rare-earth tritellurides ($R\text{Te}_3$)1 DIEGO A. ZOCCO, JAMES J. HAMLIN, M. BRIAN MAPLE, Department of Physics, University of California, San Diego, JIUN-HAW CHU, IAN R. FISHER, Department of Applied Physics, Geballe Laboratory for Advanced Materials, Stanford University — It has recently been reported that the low-dimensional rare-earth tritellurides $R\text{Te}_3$ ($R = \text{La-Nd, Sm, Gd-Tm}$) enter an unidirectional, incommensurate charge-density-wave (CDW) state when cooled below a temperature $T_{CDW1} \sim 450 - 250 \text{ K}$, which decreases with increasing rare earth atomic number, due to the effect of chemical pressure. For the heavier R (i.e., Dy-Tm), a second CDW appears at $T_{CDW2} < T_{CDW1}$, orthogonal to the first one. We have recently found that the application of external pressure induces a superconducting (SC) state in TbTe$_3$ at low temperatures, coexisting with the two CDWs and the local moment rare-earth magnetism. In this talk, we present the results of experiments we have performed on these materials at high pressures and very low temperatures, to help develop an understanding of the origin of the superconducting state.

1UCSD: NNSA/SSAA DOE DEFG52-06NA26205 - Stanford: DOE DE-AC02-76SF00515

Diego A. Zocco
Department of Physics, University of California, San Diego

Date submitted: 17 Nov 2010
Electronic form version 1.4