Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Surface Plasmon Generation by Excitons in Carbon Nanotubes

IGOR BONDAREV, TODOR ANTONIJEVIC, North Carolina Central University — Optical properties of semiconducting carbon nanotubes (CNs) originate from excitons and may be tuned by either electrostatic doping [1], or via the quantum confined Stark effect (QCSE) by means of an electrostatic field applied perpendicular to the CN axis[2]. In both cases exciton properties are mediated by surface plasmon excitations [2,3]. We have shown recently that the QCSE allows one to control the exciton-interband-plasmon coupling in individual CNs and their optical absorption, accordingly [2]. Here, we extend our studies to demonstrate the possibility of low-energy localized surface plasmon generation by optically excited excitons in small-diameter (~1nm) CNs. The stimulated character of such an energy transfer causes the buildup of the macroscopic population numbers of coherent localized surface plasmons and, as a consequence, high-intensity coherent optical-frequency fields localized at nanoscale, which can be used for various applications, such as near-field nonlinear-optical probing, sensing, or materials nanoscale modification. [1] M.Steiner, et al., NL9,3477. [2] I.V.Bondarev, et al., PRB80,085407. [3] C.D.Spataru and F.Leonard, PRL104,177402.

1 NSF (ECCS-1045661, HRD-0833184), NASA (NNX09AV07A), and ARO (W911NF-10-1-0105) support acknowledged.

Igor Bondarev
North Carolina Central University

Date submitted: 22 Nov 2010
Electronic form version 1.4