Valence-bond crystal in the extended Kagomé spin-1/2 quantum Heisenberg antiferromagnet: A variational Monte Carlo approach

FEDERICO BECCA, CNR, Istituto Officina dei Materiali and SISSA, Trieste, YASIR IQBAL, DIDIER POILBLANC, Laboratoire de Physique Théorique, Université de Toulouse — The highly-frustrated spin-1/2 quantum Heisenberg model with both nearest (J_1) and next-nearest (J_2) neighbor exchange interactions is revisited by using an extended variational space of projected wave functions that are optimized with state-of-the-art methods. Competition between modulated valence-bond crystals (VBC) proposed in the literature and the Dirac spin liquid (DSL) is investigated. We find that the addition of a small ferromagnetic next-nearest-neighbor exchange coupling $|J_2| > 0.09J_1$ leads to stabilization of a 36-site unit cell VBC, although the DSL remains a local minimum of the variational parameter landscape. This implies that the VBC is not trivially connected to the DSL: instead it possesses a non-trivial flux pattern and large dimerization.

Federico Becca
CNR, Istituto Officina dei Materiali and SISSA

Date submitted: 17 Nov 2010
Electronic form version 1.4