Superconductivity in Zr$_2$(Co$_{1-x}$M$_x$) (M = Cu, Ga)1 K.J. SYU, C.H. WU, H.H. WU, S.C. CHEN, H.H. SUNG, W.H. LEE, National Chung Cheng University, W.H. LEE TEAM — As revealed in the powder x-ray diffraction and crystallographic data, the body-centered tetragonal structure of the parent compound Zr$_2$Co is retained in both Zr$_2$(Co$_{1-x}$Cu$_x$) and Zr$_2$(Co$_{1-x}$Ga$_x$) systems with the solubility limit near $x = 0.3$. The refined lattice parameters indicate that there is a movement for c to decrease and a to increase, due to the doping with Cu or Ga in the compound. Since the percentage change in lattice parameters c and a is comparable, a prominent peak in the unit cell volume v versus x curve therefore appears around $x = 0.15$ and $x = 0.2$ for Zr$_2$(Co$_{1-x}$Cu$_x$) and Zr$_2$(Co$_{1-x}$Ga$_x$) systems, respectively. Magnetic and electrical measurements show that there is an explicit maximum T_c close to $x = 0.05$ for both systems. As compared with the Zr$_2$(Co$_{1-x}$Ni$_x$) system1, it may imply that the superconducting transition temperature in Zr$_2$(Co$_{1-x}$Cu$_x$) and Zr$_2$(Co$_{1-x}$Ga$_x$) relate more to the spin density fluctuations than to the density of states at the Fermi level. 1M. Takekuni, H. Sugita and S. Wada, Phys. Rev. B 58, 11698 (1998).

1Supported by the National Science Council of Republic of China under grant numbers NSC 99-2112-M-194-006-MY3 and NSC99-2811-M-194-021.

Wun-Hsin Lee
National Chung Cheng Cheng University

Date submitted: 17 Nov 2010

Electronic form version 1.4