Mesoscopic Transport of Ultracold Atoms in Optical Lattices

MARTIN BRUDERER, WOLFGANG BELZIG, Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany — Transport of quantum gases is attracting considerable attention, both on a theoretical and experimental level, in part because ultracold atoms confined to optical lattices can be coherently manipulated and detected on microscopic scales. In particular, substantial technological progress has opened the way for a bottom-up approach to mesoscopic transport in optical lattices, in which case the coherence in certain parts of the system is deliberately destroyed. We show based on a specific setup, namely two incoherent atomic reservoirs connected by a short optical lattice, that mesoscopic phenomena such as, e.g., phonon assisted transport, coherent suppression of tunneling and non-adiabatic quantum pumping can be realized with ultracold atoms. For our analysis in the tight-binding regime we use the non-equilibrium Green’s functions formalism extended to include the time dependence of the reservoirs.

Supported by the Swiss National Science Foundation (Project No. PBSKP2/130366).