Abstract Submitted for the MAR11 Meeting of The American Physical Society

Transition Behavior of Hydrogen Bonding mediated Block Copolymer complex SUDHAKAR NAIDU, HYUNGJU AHN, HOYEON LEE, DU YEOL RYU, Yonsei University, YONSEI UNIVERSITY TEAM — We have investigated transition behavior for block copolymer (BCP) complexes composed of a lamella-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and phenyl acetamide derivatives. Influence of small molecules on transition temperatures such as order-to-disorder transitions (ODT) were analyzed by by in-situ small angle x-ray scattering (SAXS) and depolarized light scattering (DPLS). The importance of the availability for H-bonding mediation to control over transition behavior for BCP mixtures with the functional molecules was shown by changing the annealing temperatures. Non-covalent interactions between the nitrogen units of P2VP block and small molecules enhances nonfavorable segmental interactions between two block components, leading to a significant increase in d-spacing for BCP mixtures.

> Du Yeol Ryu Yonsei University

Date submitted: 18 Nov 2010

Electronic form version 1.4