Synthesis and Photovoltaic Properties of a New Class of Donor-Acceptor Alternating Copolymers Containing Pechmann-Dye Derivatives

JAE WOONG JUNG, WON HO JO, Department of Materials Science and Engineering, Seoul National University — Over the last decade, various low bandgap copolymers that exhibit over 5% power conversion efficiency have been developed. However, the synthesis of most low-bandgap polymers is complicated with relatively long synthetic routes and low yield. In this work, a new series of novel alternating copolymers composed of thiophene and Pechmann-dye derivatives were synthesized and used as an electron donor material of bulk heterojunction polymer solar cells. Two Pechmann-dye derivatives, 5,5′-bis-(3-octyl-thiophen-2-yl)-[3,3′]bifuranylidene-2,2′-dione and 3,7-bis-(3-octyl-thiophen-2-yl)-pyrano[4,3-c]pyran-1,5-dione which have high molar absorption coefficient, strong electron-deficient core, and planar structure, were easily synthesized via simple three steps with high yield. The use of the Pechmann-dye derivatives as a building block for copolymers results in promising optical, electrochemical, and photophysical properties. Morphology, charge transport, and photovoltaic characteristics of the new copolymers will be discussed.

Jae Woong Jung
Dept of Materials Science and Engineering, Seoul National University

Date submitted: 16 Dec 2010

Electronic form version 1.4