Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Bipolar resistive switching in Ba$_{0.5}$Sr$_{0.5}$Co$_{0.2}$Fe$_{0.8}$O$_3$ thin films

ZHONGWEN XING, Dept. of Materials Science and Engineering, Nanjing University, NAIJUAN WU, ALEX IGNATIEV, Center for Advanced Materials and Department of Physics, University of Houston — Five-component perovskite Ba$_{0.5}$Sr$_{0.5}$Co$_{0.2}$Fe$_{0.8}$O$_3$ (BSCFO) thin films are reported to have polarized electrical-pulse-induced resistance (EPIR) change at room temperature. Such an EPIR change is attributed to a combined effect of the resistance change of the Schottky barrier and the oxygen ion/vacancy movement near the interface. In the BSCFO, the lower threshold voltage of the electric pulse that leads to nonvolatile resistive changes is close related to its higher oxygen permeability.

Zhongwen Xing
Dept. of Materials Science and Engineering, Nanjing University

Date submitted: 22 Nov 2010

Electronic form version 1.4