Measurement of the shear modulus of single-layer graphene

THOMAS METCALF, Naval Research Laboratory, XIAO LIU, JEREMY ROBINSON, KEITH PERKINS, BRIAN HOUSTON — We have measured the shear modulus of large area (2mm × 5mm), single-layer (90–95%) polycrystalline graphene sheets and found values consistent with theoretical predictions of $G=200$ GPa. The graphene was grown by chemical vapor deposition onto a copper foil and subsequently transferred onto a mechanical resonator known as a double-paddle oscillator (DPO). DPOs are fabricated from single-crystal, 0.3mm thick silicon wafers, and have a torsional vibratory mode at 5500 Hz which has a very large quality factor, $Q = 5 \times 10^7$, at low (< 10 K) temperatures, giving the DPO a high sensitivity to a film deposited on its torsional element. Such a film increases the (lumped-element) spring constant of the resonator, and the film’s shear modulus can be deduced from the subsequent resonant frequency shift.

1Work supported by the Office of Naval Research

Thomas Metcalf
Naval Research Laboratory

Date submitted: 18 Nov 2010