Visualizing spin-vortex evolution of a topological insulator1 YI-HUA WANG, DAVID HSIEH, DAN PILON, MIT, LIANG FU, Harvard, DILLON GARDNER, YOUNG LEE, NUH GEDIK, MIT — Charge carriers on the surface of a topological insulator are predicted to form a spin-vortex in momentum space with the direction of spin rotation determined by whether the carriers are electron-like or hole-like. We show that the angular momentum of photon is extremely sensitive to the spin of carriers by performing time-of-flight based angle-resolved-photoelectron spectroscopy (TOF-ARPES) with photons of different helicity. We demonstrate the first reciprocal space volumetric mapping of the vectorial spin-texture of the surface states of Bi_2Se_3 and directly observe spin-vortex evolution from electron-like to hole-like states and the departure from perpendicular momentum-spin locking.

1This work is supported by DOE award number DE-FG02-08ER46521, ARO-DURIP award number W911NF-09-1-0170 and MIT Center for Materials Science and Engineering

Yihua Wang
MIT

Date submitted: 18 Nov 2010

Electronic form version 1.4