Phase diagram of thermoelectric Bi$_2$S$_3$-Bi$_2$Se$_3$-Bi$_2$Te$_3$ system

WEISHU LIU, QINYONG ZHANG, QIAN ZHANG, Boston College, BO YU, GANG CHEN, ZHIFENG REN, Boston College, BOSTON COLLEGE TEAM, MIT TEAM — It is well known that the highest ZT value, at an optimized carrier concentration, is mainly determined by a material parameter $\beta = \mu (m^*/m_0)^{3/2}/\kappa_{\text{lat}}$, where $\mu (m^*/m_0)^{3/2}$ and κ_{lat} are the weighted carrier mobility and lattice thermal conductivity, respectively. In order to explore some new compositions in Bi$_2$S$_3$-Bi$_2$Se$_3$-Bi$_2$Te$_3$ system, we propose a compositional thermoelectric phase diagram (TPD), including weighted carrier mobility, lattice thermal conductivity, and material parameter, for the 1% copper doped Bi$_2$S$_3$-Bi$_2$Se$_3$-Bi$_2$Te$_3$ solid solution fabricated by MA-HP method. Here, the $\mu (m^*/m_0)^{3/2}$ and κ_{lat} values could be deduced from the measured electrical resistivity, Seebeck coefficient, and thermal conductivity. The alloying effect on the thermoelectric phase diagram will be discussed from varying atomic size, chemical bond, lattice structure, etc.

Weishu Liu
Boston College

Date submitted: 22 Nov 2010