Theory of coherent phonons in graphene

G.D. SANDERS, University of Florida, C.J. STANTON, University of Florida, J.-H. KIM, K.-J. YEE, Chungnam National University, M.H. JUNG, B.H. HONG, Sungkyunkwan University, E.H. HAROZ, J. KONO, Rice University — We develop a theory for the generation and detection of coherent phonons in graphene. Coherent phonons are generated via the deformation potential electron-phonon interaction with photogenerated carriers. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire graphene Brillouin zone while the phonon states are treated in a valence force field model. The equations of motion for the coherent phonon amplitudes are obtained in a density matrix formalism and we find that the coherent phonon amplitudes satisfy driven oscillator equations for each value of the phonon wavevector. Comparison is made with recent experimental measurements.

1Supported by NSF through grants OISE-0530220 and DMR-0706313 and the ONR through grant ONR-00075094, and the Robert A. Welch Foundation through grant No. C-1509.