Superfluid Densities in Superconducting/Ferromagnetic (Nb/NiV/Nb) Heterostructures

MICHAEL HINTON, BRIAN PETERS, ADAM HAUSER, Ohio State University, JULIA MEYER, OSU & INAC/SPSMS, CEA, FENGYUAN YANG, THOMAS LEMBERGER, Ohio State University — Superfluid density measurements allow us to probe the superconducting structure of thin films below T_c with remarkable detail. They yield information not only of the inherent robustness of the superconducting state, but also about the homogeneity of the sample and possible “hidden” transitions at temperatures lower than the initial T_c. For this reason multiple transitions in superconducting heterostructures are revealed to us. We use superfluid density measurements on Nb/Ni$_{0.95}$V$_{0.05}$/Nb trilayers to study the interplay between two superconducting films separated by the destructive proximity effects of a ferromagnet. We show there are trilayers with strong coupling, which produces a single transition, that become decoupled to the point of separation into two transitions as the ferromagnetic layer thickness increases. We discuss the difficulties in observing the second transition in σ_1, while obvious in λ^{-2}.

Michael Hinton
Ohio State University

Date submitted: 20 Dec 2010

Electronic form version 1.4