Direct atomic imaging of Mn in the GaN growth surface: High-density, Two-dimensional, Striped Superstructures \(^1\) KANGKANG WANG, Ohio University, NOBORU TAKEUCHI, ABHIJIT CHINCHORE, WENZHI LIN, ARTHUR SMITH — A class of novel well-ordered striped superstructures have been observed by depositing submonolayer Mn onto GaN(0001)-“1×1” surface. These superstructures consist of stripe domains along [1100]\(_{GaN}\) with various widths, while scanning tunneling microscopy images resolved a common local $\sqrt{3} \times \sqrt{3}$-R30\(^{\circ}\) structure for the stripes. Combined with first-principles calculations, a new two-dimensional structural model is proposed having a dense Mn\(_x\)Ga\(_{1-x}\) surface layer. Mn atomic sites within the GaN surface are directly identified. A spin-induced asymmetry in the Mn electronic structure is revealed in real-space for the narrow stripes. These findings explain the behavior of Mn atoms in the GaN growth surface and herald the development of magnetic nanostructures on GaN surfaces.

\(^1\)This work is funded by Department of Energy and National Science Fundation.

Kangkang Wang
Graduate Student at Ohio University

Date submitted: 20 Dec 2010 Electronic form version 1.4