Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Pressure shift of the superconducting T_c of (Pr$_{1-x}$Sr$_x$)FeAsO and Sm(O$_{1-x}$F$_x$)FeAs
KALYAN SASMAL, Department of Physics, TcSUH, University of Houston, G. MU, H.-H. WEN, Institute of Physics, Chinese Academy of Sciences, B. LORENZ, Department of Physics, TcSUH, University of Houston, CHING-WU CHU, Department of Physics, TcSUH, University of Houston and Lawrence Berkeley National Laboratory — Pressure plays important role in discovery and unraveling physics of novel superconductors. High Tc iron-based layered compounds can be obtained by hole/electron-doping. To determine if a symmetry between electron and hole-doping exists, we investigated pressure-induced shift in T_c by carrying out resistivity measurements under hydrostatic pressure on hole-doped Pr$_{1-x}$Sr$_x$FeAsO up to 1.8GPa using piston-cylinder clamp cell device. The coexistence of superconductivity & spin-density wave behavior were observed and pressure effects on both being investigated. Four probe resistance measurements show T_c increases (+dT_c/dP) with pressure for under-doped Pr$_{1-x}$Sr$_x$FeAsO similar to high-T$_c$ cuprates. High pressure can compress crystalline structure of material and force its layers to be closer, which might increase material’s T_c by improving pressure-induced charge transfer between (Fe$_2$As$_2$) and (Pr/Sr)O layers. The pressure effect on T_c of Pr$_{1-x}$Sr$_x$FeAsO is being compared with that of electron doped Sm(O$_{1-x}$F$_x$)FeAs. The results suggest a symmetry appear to exist between electron and hole-doping Fe-pnictide superconductors.

Kalyan Sasmal
Dept of Physics and TcSUH, University of Houston,
Houston, TX 77204, USA

Date submitted: 20 Dec 2010
Electronic form version 1.4