Strain-modified thermopower of ultrathin LaNiO$_3$ films1

NARAYAN PRASAI, JOSHUA COHN, University of Miami, EUN JU MOON, JIAN LIU, MICHAEL KAREEV, BENJAMIN GRAY, JAK CHAKHALIAN, University of Arkansas, JAMES RONDINELLI, Advanced Photon Source, Argonne National Laboratory — The influence of epitaxial strain on electronic transport in the correlated metal LaNiO$_3$ is investigated through measurements of thermopower (TEP) in the temperature range 5K \leq T \leq 330K on a series of fully-strained, 10-unit-cell-thick films grown by pulsed-laser deposition on (100)-oriented YAlO$_3$, LaAlO$_3$, SrTiO$_3$, and GaScO$_3$ substrates. The TEP exhibits an electron-like, linear-T contribution for $T \geq$ 150 K with a slope approximately independent of strain, but a magnitude that varies systematically with strain. A peak in the TEP at $T \approx$ 25 K also correlates with strain and is unaffected by a 9-T magnetic field. The implications of these results for strain-modified charge-carrier diffusion and phonon drag contributions to the TEP will be discussed.

1Work at the Univ. Miami was supported by an award from the Research Corporation, and at Univ. Ark. by the DOD-ARO under Contract No. 0402-17291 and NSF Contract No. DMR-0747808.

Joshua Cohn
University of Miami

Date submitted: 18 Nov 2010

Electronic form version 1.4