High-pressure equation of state of $\text{U}_3\text{O}_8$1 JAE-HYUN KLEPEIS, ZSOLT JENEI, MAGNUS LIPP, WILLIAM EVANS, Lawrence Livermore National Laboratory, DMITRY POPOV, HPCAT, APS, Argonne National Laboratory, CHANGYONG PARK, HPCAT APS Argonne National Laboratory — We will present experimental studies at high pressures of the equation of state of U_3O_8. Isothermal pressure-volume measurements of U_3O_8 were made at ambient/elevated (600 K) temperatures in the pressure range of 1 atm \sim 80 GPa (10 \sim 70 GPa). Angle dispersive X-ray diffraction patterns at ambient temperature indicate that the A-centered orthorhombic structure of U_3O_8 transforms to the face centered cubic (fcc) structure above 9 GPa. Both the orthorhombic and cubic phases co-exist between 9 GPa and 30 GPa. As the temperature is increased at 10 GPa, we find that U_3O_8 also transforms to the fcc structure. As the pressure is increased at 600 K, the fcc structure undergoes a phase transition to the body centered tetragonal structure. Since the uranium in U_3O_8 is the dominant x-ray scatterer, the behavior of the oxygen at the phase transitions was measured using Raman spectroscopy.

1This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. HPCAT is supported by CIW, CDAC, UNLV and LLNL through DOE-NN5A, DOE-BES and NSF. APS is supported by DOE-BES, under Contract DE-AC02-06CH11357.

Jae-Hyun Klepeis
Lawrence Livermore National Laboratory

Date submitted: 20 Dec 2010

Electronic form version 1.4