Coherence peak and pair-breaking effects in the ac conductivity of BaFe$_{2-2x}$Co$_{2x}$As$_2$ epitaxial thin films

N.P. ARMITAGE, ROLANDO VALDÉS AGUILAR, L.S. BILBRO, The Johns Hopkins University, S. LEE, C.W. BARK, C.B. EOM, University of Wisconsin, THE JOHNS HOPKINS UNIVERSITY TEAM, UNIVERSITY OF WISCONSIN TEAM — We report a study of high quality pnictide superconductor BaFe$_{1.84}$Co$_{0.16}$As$_2$ epitaxial thin films using time-domain THz spectroscopy. Near T_c we find evidence for a coherence peak and qualitative agreement with the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature, we find that the real part of the THz conductivity is not fully suppressed and σ_2 is significantly smaller than the Matthijs-Bardeen expectation. The temperature dependence of the penetration depth λ follows a power law with an unusually high exponent of 3.1. We interpret these results as consistent with impurity scattering induced pair-breaking. Taken together our results are strong support for an extended $s\pm$ symmetry order parameter.

N.P. Armitage
The Johns Hopkins University

Date submitted: 06 Jan 2011 Electronic form version 1.4