3D Cell Culture Imaging with Digital Holographic Microscopy

THOMAS DIMIDUK, Harvard University, KENDRA NYBERG, University of Oregon, DARIELA ALMEDA, Harvard University, EKATERINA KOSHELVA, University of Chicago, RYAN MCGORTY, DAVID KAZ, EMILY GARDEL, DEBRA AUGUSTE, VINOTHAN MANOHARAN, Harvard University — Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging technique, digital holographic microscopy, which can capture 3D information with axial resolution better than $2\mu m$ in a $100\mu m$ deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing \sim 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast.

We acknowledge support from NSF GRFP.

Thomas Dimiduk
Harvard University