Ion conductivity relaxation and specific heat close to the first-order phase transition of γ-RbAg_4I_5 RUBEN A. VARGAS, Universidad del Valle, HERNANDO CORREA, Universidad del Quindo, DIEGO PEÑA-LARA, Universidad del Valle — We report on simultaneous measurements of specific heat at normal pressure and ac conductivity in single-crystalline γ-RbAg$_4$I$_5$ close to and below its γ-to-β first order phase transition at 121 K. We found an accurate proportionality between the specific heat, c_P, and the temperature derivative of the product nE_σ, where $\beta = 1 - n$, is the Kohlrausch stretching exponent for the conductivity relaxation and $E_\sigma = d(ln\sigma)/d(T^{-1})$ is the dc conductivity activation energy, which is non-Arrhenius. Thus, our results show that the dc conductivity activation energy $E_\sigma(T)$ includes, besides the true microscopic energy “barrier” for independent ionic motion, $(1-n)E_\sigma$ (according the coupling model), an additional contribution from the enthalpy of the mobile Ag-ions defects, h.

Ruben A. Vargas
Universidad del Valle

Date submitted: 13 Dec 2010

Electronic form version 1.4