Abstract Submitted for the MAR11 Meeting of The American Physical Society

Possible *n*-type carrier producers in $In_2O_3(ZnO)_k$ homologous compounds¹ HAOWEI PENG, Northwestern University, JUNG-HWAN SONG, ARTHUR J. FREEMAN — $\ln_2 O_3(ZnO)_k$ (k = integers) homologous compounds are promising intrinsic *n*-type transparent conducting semiconductors.² To find out the carrier producers, we investigated the energetics and thermodynamic properties of *n*-type defects and their complexes in $In_2O_3(ZnO)_k$, with the k=3 phase as prototype, using the first-princiles density functional method. We calculated the defect formation energies and defect transition energy levels of oxygen vacancies (V_O) , substitutional indium on zinc sites (In_{Zn}) , zinc and indium interstitials $(Zn_i \text{ and } In_i)$ on different atomic sites, and also some V_O -In_{Zn} and V_O -Zn_i defect complexes. We find, under the experimental growth condition of O-poor and $T = 1300^{\circ}$ C, that V_O, In_{Zn} , and V_O - In_{Zn} complexes have much lower formation energies than the others, among which V_O will stay in the neutral charged state and the latter two are the most possible *n*-type carrier producers. The V_O -In_{Zn} complex tends to form between V_O and In_{Zn} in the same atomic layer; thus its distribution should be affected by the site-preference of V_{Ω} .

¹Supported by the NSF MRSEC at N.U. Materials Research Center ²T. Moriga, et.al., J. Am. Ceram. Soc. **81**, 1310 (1998).

Haowei Peng Northwestern University

Date submitted: 18 Nov 2010

Electronic form version 1.4