High density H2 associative absorption on Titanium alpha-borozene (Ti2B6H6): An ab-initio case study

ALIREZA AKBARZADEH1, C.J. TYMZCAK3, Texas Southern University — Hydrogen is considered as a clean energy carrier that could be a future replacement for our addiction to fossil fuels. However, in order to have hydrogen economy at its highest efficiently we need to store hydrogen at high volumetric and gravimetric density. Using the all electron hybrid density functional theory, we have designed a benzene-like-molecule, Ti2B6H6, which has the promise of achieving this goal. Our results show that the molecule can associatively absorb the hydrogen up to ten percent by weight of hydrogen, which exceeds the 2015 US department of energy target. In this presentation we will discuss the mechanisms of H2 absorption and possible applications of this novel molecule.

1This research is funded by the Welch Foundation under Grant J. 1675 and the Texas Southern University High Performance Computing Center.
2Physics Department
3Physics Department

Alireza Akbarzadeh
Texas Southern University

Date submitted: 22 Dec 2010

Electronic form version 1.4