Ultra high sensitivity, room temperature magneto-optic field sensor made of ferromagnetic bismuth rare-earth iron garnet thick films

DONG HO WU, ANTHONY GARZARELLA, Naval Research Laboratory, VINCE FRATELLO, Integrated Photonics, Inc — The ferrimagnetic bismuth rare-earth iron garnet (BiGdLu)$_3$(FeGa)$_5$O$_{12}$ thick film has a specific Faraday rotation θ_S of 0.09°/mm at 1550 nm and excellent transparency at infrared wavelengths. Using the thick film we recently have demonstrated a magneto-optic (MO) field sensor with a sensitivity of about 10^{-14} T/Hz$^{1/2}$, comparable with SQUID. The sensor is made of all dielectric materials including the bismuth rare-earth iron garnet and optical fibers, and is operated at room temperature without any cooling requirement. The MO field sensor is capable to measure a magnetic field over a very large dynamic range (from a very weak field to a very high magnetic field exceeding several hundred Tesla) and over a very wide frequency range, which may be from DC to a few hundred GHz. However, presently, our MO sensor’s frequency range is limited from DC to 2 GHz. We think that this limited frequency range is due to the presence of magnetic domains in the bismuth rare-earth iron garnet film. In this presentation we will report our experimental results obtained from this MO field sensor as well as the effect of magnetic domains.

Dong Ho Wu
Naval Research Laboratory

Date submitted: 23 Nov 2010