The nature of magneto-elastic coupling with the isovalent substitution at the B-site in LaCo$_{1-y}$B$_y$O$_3$ JUAN YU, DESPINA LOUCA, Physics Department, University of Virginia — The influence of magnetic ion doping on the interplay of the lattice with magnetism in LaCo$_{1-y}$B$_y$O$_3$ (B = Ni or Fe, $y = 0.1, 0.4$) has been investigated via neutron scattering techniques. The substitution of either Ni$^{3+}$ ($3d^7$) or Fe$^{3+}$ ($3d^5$) does not alter the crystal symmetry which remains rhombohedral (R-3c) at all temperatures. With doping, the degree of cooperative octahedral rotations about the (111) axis increases, but it is only with Ni that such a rotation is accompanied by a compression along the trigonal axis. The observed crystal distortion is invoked to break the degeneracy of the magnetic Co$^{3+}$ ions, while maintaining the Co-O bonds at a constant length. The absence of two distinct types of Co-O bond lengths in the local structure with the substitution of Fe$^{3+}$ or Ni$^{3+}$ for Co$^{3+}$ ($3d^6$) is indicative that, unlike in the hole doped cobaltites with Ba$^{2+}$ or Sr$^{2+}$ previously studied, the intermediate spin state of Co is either absent or suppressed. This leaves us to question the origin of the magnetic interactions, which most likely arises from a high-spin state of the Co ion.

Juan Yu
Physics Department, University of Virginia

Date submitted: 18 Nov 2010

Electronic form version 1.4