Nanofabrication of single spins and spin arrays in diamond1 D.M. TOYLI, G.D. FUCHS, D.J. CHRISTLE, D.D. AWSCHALOM, Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA, C.D. WEIS, T. SCHENKEL, Lawrence Berkeley National Laboratory, Berkeley, CA — The properties of isolated nitrogen vacancy (NV) centers in diamond make them a promising solid-state qubit candidate for spin-based quantum information processing. However, scaling this system to multi-qubit NV center devices requires methods to accurately place single NV centers in pure diamond substrates. To address this challenge we have developed a method for fabricating single NV centers on 50 nm length scales based on ion implantation and electron beam lithography.2 Secondary ion mass spectroscopy measurements facilitate depth profiling of the implanted nitrogen to provide three-dimensional characterization of the NV center spatial distribution. Finally, electron spin resonance measurements of single NV centers, including temperature-dependent spin coherence measurements, suggest a pathway for optimizing single spin coherence in future devices.

1This work is funded by AFOSR, ARO, DARPA, and DOE.
2D. M. Toyli \textit{et al.}, Nano Lett. 10, 3168 (2010).