Antiferromagnetic ordering in the absence of a structural distortion in Ba(Fe$_{1-x}$Mn$_x$)$_2$As$_2$1 A.I. GOLDMAN, M.G. KIM, A. KREYSSIG, A. THALER, D.K. PRATT, W. TIAN, J.L. ZARESTKY, Ames Laboratory, USDOE and Iowa State University, M.A. GREEN, NIST Center for Neutron Research, S.L. BUD’KO, P.C. CANFIELD, R.J. MCQUEENEY, Ames Laboratory, USDOE and Iowa State University — Neutron and x-ray diffraction studies of Ba(Fe$_{1-x}$Mn$_x$)$_2$As$_2$ for low doping concentrations ($x \leq 0.176$) reveal that at a critical concentration, $0.102 < x < 0.118$, the tetragonal-to-orthorhombic transition abruptly disappears whereas magnetic ordering with a propagation vector of ($\frac{1}{2}$ $\frac{1}{2}$ 1) persists. Among all of the iron arsenides this observation is unique to Mn doping, and unexpected because all models for stripe-like antiferromagnetic order anticipate an attendant orthorhombic distortion due to magnetoelastic effects. We discuss these observations and their consequences in terms of previous studies of Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ compounds ($TM =$ transition metal), and models for magnetic ordering in the iron arsenide compounds.

1This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy

A. I. Goldman
Ames Laboratory, USDOE and Iowa State University

Date submitted: 23 Nov 2010