Abstract Submitted for the MAR11 Meeting of The American Physical Society

NMR Study of κ -(ET)₂Cu[N(CN)₂]Br¹ TAK-KEI LUI, J.C. GEZO, R.W. GIANNETTA, C.P. SLICHTER, University of Illinois at Urbana-Champaign, IL 61801, J.A. SCHLUETER, Material Sciences Division, Argonne National Laboratory, Argonne, IL 60439 — We report measurements of the ¹³C spin-lattice relaxation rate, $(T_1T)^{-1}$ of κ -(ET)₂Cu[N(CN)₂]Br, an organic superconductor with $T_C = 11.9$ K. The shape of the $(T_1T)^{-1}$ versus T graph suggests the existence of a finite spin singlet-triplet gap². Knight shifts were measured to search for a twocomponent electronic system. We also report measurements using an "S-shape" pulse sequence³ that inverts half of the absorption line, permitting one to study slow motions and spin density waves.

¹Work at UIUC supported by NSF DMR 10-05708, and Center for Emergent Superconductivity USDOE Award No. DE-AC02-98CH10886, Work at Argonne supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory, DOE Contract No. DE-AC02-06CH11357.

²C. P. Slichter, Experimental Evidence for Spin Fluctuations in High Temperature Superconductors, in *Strongly Correlated Electronic Materials*: A Los Alamos Symposium, pp. 427-479, ed. K.S. Bedell *et al.*, Addison-Wesley (1994)

³L. R. Becerra, C. A. Klug, C. P. Slichter, and J. H. Sinfelt, J. Phys. Chem. **97**, 12014 (1993)

Tak-Kei Lui University of Illinois at Urbana-Champaign, IL 61801

Date submitted: 22 Dec 2010

Electronic form version 1.4