Broken Rotational Symmetry in the Hidden Order Phase of URu$_2$Si$_2$

T. SHIBAUCHI, R. OKAZAKI, H.J. SHI, Department of Physics, Kyoto University, Y. HAGA, T.D. MATSUDA, E. YAMAMOTO, JAEA, Y. ONUKI, JAEA and Osaka University, H. IKEDA, Y. MATSUDA, Department of Physics, Kyoto University — The nature of the so-called ‘hidden order’ phase transition at $T_h = 17.5$ K in the heavy fermion compound URu$_2$Si$_2$ has posed a long-standing mystery, because despite 25 years of study it remains unidentified what symmetry is broken in this ordered phase. We report the emergence of an in-plane anisotropy of the magnetic susceptibility below T_h, which breaks four-fold rotational symmetry in tetragonal URu$_2$Si$_2$. Two-fold oscillations in the magnetic torque, which is measured in magnetic fields rotating precisely within the ab plane, are sensitively detected in small pure crystals for the first time. The amplitude of the two-fold oscillations onsets precisely at T_h, indicating its close link to an order parameter of the hidden order phase. Our findings uncover that the hidden order phase is an electronic ‘nematic’ phase, a translationally invariant metallic phase with spontaneous breaking of rotational symmetry.

Takasada Shibauchi
Department of Physics, Kyoto University

Date submitted: 22 Dec 2010

Electronic form version 1.4