Modified Embedded Atom Method potential for Fe-C system
LAALITHA LIYANAGE, Mississippi State University, JEFF HOZE, SEONG-GON KIM, MARK TSCHOPP, SUNGHO KIM, Mississippi State University, MIKE BASKES, Los Alamos National Laboratory, MARK HORSTEMEYER, Mississippi State University — A Modified Embedded Atom Method potential for the Fe-C alloy system was developed. Pair parameters were constructed based on the structural and elastic properties of element pairs in the L12 reference structure from ab-initio simulations and then adjusted to reproduce heat of formation and elastic constants of cementite, and the interstitial energies for iron. The single element potential of carbon correctly predicts graphite and diamond as the two minimum energy structures. The potential parameters were optimized using an optimization method combining Latin hypercube sampling of the N-dimensional parameter space and multi-objective optimization. The potential was tested for stability of cementite by molecular dynamic simulation at room temperature.