Polarized Light Emission from a Single Hot Carbon Nanotube

S.B. SINGER, MATTHEW MECKLEBURG, EDWARD WHITE, B.C. REGAN, UCLA Department of Physics and Astronomy, and CNSI — We fabricate nanoscale lamps, incandescent in the visible, which have a filament consisting of a single multiwall carbon nanotube. The radius \(r \) of the nanotube is much smaller than the wavelength \(\lambda \) of the emitted light, making it a very unusual thermal emitter. Transmission electron microscopy is used to determine the nanotube’s axis as well as the parameters of the tube’s geometry. We image both light polarizations on a CCD camera simultaneously and observe a degree of polarization between 70% and 85% along the tube’s axis at visible wavelengths—highly polarized, yet less so than is expected for a conducting antenna. Furthermore, the polarization’s variation with wavelength trends opposite to that predicted by classical models and analogy with graphene.

\(^1\)Supported by NSF Career Award \#0748880.