High critical current density in BaAs$_2$(Fe,Co)$_2$ thin films up to 35 T

J. JIANG, National High Magnetic Field Laboratory, FSU, Tallahassee, Florida, C. TARANTINI, J.D. WEISS, J. JAROSZYNSKY, E.E. HELLSTROM, D.C. LARBALESTIER, S. LEE, C.W. BARK, H.W. JANG, C.M. FOLKMAN, S.H. BAEK, J.W. PARK, C.B. EOM, Y. ZHANG, C.T. NELSON, X.Q. PAN — In the Co-doped BaFe$_2$As$_2$ thin films we intensively investigated field and angular dependences of J_c down 4.2 K in high field. We found a strong correlated c-axis pinning and J_c for field along the c-axis exceeds J_c for H//ab plane up to ~20T, inverting the expectation of the Hc2 anisotropy. As a consequence the angular dependence is very weak and J_c is still over 10^5 A/cm2 at 20T. Moreover the maximum pinning force F_p(4.2K) reaches 35-40 GN/m3 at 15-20T depending on the field configuration, indicative of strong high-field vortex pinning. High resolution transmission electron microscopy reveals that the strong vortex pinning is due to a high density of non-superconducting Ba-Fe-O nanocolumnar defects whose diameter is ~2ξ, perfect conditions for a strong pinning.

Chiara Tarantini
National High Magnetic Field Laboratory, FSU, Tallahassee, Florida

Date submitted: 18 Nov 2010 Electronic form version 1.4